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Introduction
Early transition metal carbides are interesting candidates for use in a number of catalytic reactions. They have been shown to exhibit similar reactivities to those 

of noble metals under arange of catalytic conditions.1 Much of the subsequent research has focused on hydrocarbon transformation reactions, but they also 
demonstrate potential in oxidation chemistry. In such non-oxidic systems there exists the potential to probe the role of surface and subsurface oxygen in catalysis 
(cf. Mars von Krevelen mechanism). In order to study these materials, molybdenum carbide was chosen as a basis material from which to generate polymetallic 

doped-carbides. It is anticipated that such doping will confer improved catalytic properties to the final material.

Objectives
• Develop a flexible synthetic route to molybdenum carbide with high surface area

• Explore synthesis of bimetallic Mo/V carbide in order to tune reactivity

• Test and compare carbide materials for reactivity in the dehydrogenation (DH) 
and oxydehydrogenation (ODH) of propane

• Study the influence of feed conditions on the carbide activity and stability
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• The carbide is formed from the
precursor oxide in a temperature 
programmed reaction under an 
atmosphere of H2/CH4 (4:1)

• To achieve high surface area material
(50 – 100 m2/g) a high space velocity 
is used in combination with full rotational
agitation of the reacting material

• Quantities of material 
(>10g) may be produced 
using this method and 
additionally treated in 
O2 - free conditions

Characterization of Mo2C and Mo(V)Cx

• Electron microscopy indicates the V-containing
material has a fibrous, high aspect ratio morphology

• N2 sorption measurements show exceptional surface 
area (100 – 110m2/g) of the V-modified carbide

• SEM and porosimetry calculations indicate a more 
highly ordered mesostructure for V modification

• X-ray spot diffraction shows ordered crystallinity over
a large spot, indicative of a topotactic transformation

Synthesis of h-MoO3 precursors

Synthesis of the complex molybdate is carried out by a controlled precipitation in 
acidic media followed by an aging period (2h)

• Study the influence of feed conditions on the carbide activity and stability
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Conditions
• Temperature = 773K
• DH: 10%C3H8
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TEM study of Mo(V)Cx with 
spot diffraction showing 

regular crystallinity (inset)

SEM micrographs of Mo(V)Cx (above) showing the fibrous 
morphology of nano-sized inverse pores

Contrasting SEM micrograph (right) of Mo2C shown 
alongside an N2 BET isotherm (left) illustrating the carbide 

porosity and surface area

Post catalysis characterisation
• Carbide unstable to oxidation by ODH feed leading 

to severe deactivation
• Dehydrogenation deactivates via deposition of C 

- no observed phase change
• Dehydrogenation in presence of steam leads to partial

oxidation Mo2C → MoO2
• Surface area and phase composition can be partly 

stabilised for steam DH** 
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Comparison of Mo2C and Mo(V)Cx

• V-doped carbide shows higher activity under similar conditions

• U-tube reactor; ID = 4 mm

• Bed length = 25mm (±0.5°C)

• Length/ID = 5

• GHSV: 500 < x < 120000

Conclusions
• High surface area Mo2C was produced from vanadium-doped 

h-MoO3 with varying V content

• A novel mesostructured bimetallic carbide was prepared with 
exceptional morphology

Reactivity explored for the activation of propane:

• Oxycarbide more active phase for dehydrogenation

• Metallic carbide surface exhibits increased stability to oxidation

• Mo2C bulk phase can be preserved in a balance of steam 
oxidation and carburisation-reduction

N2

O2

C3H8

Helium (GC dilution)

High-flow MFCs

Low-flow MFCs

Waste gas

(Agilent® 
6890 GC)

P 2400°C

T-controller
150°C

• Mo/V catalysts are pre-reduced in H2 at different temperatures to 
explore the influence of surface composition on product distribution

• Freshly reduced carbides show similar initial reactivity to 
hydrogenolysis/dehydrogenation

• Oxycarbide species is more highly selective to dehydrogenation

• More highly reduced material exhibits greater stability to oxidation

• Most active species lies between molybdenum carbide and 
molybdenum dioxide oxidation state
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• DH: 10%C3H8

• ODH: 10%C3H8 + 1.5%O2

• Steam DH: 10%C3H8 + 10%H2O 

Total flow – 40 mln/min, Inert = N2

Mo2C (290mg) diluted 1:1 (w/w) with SiC
– pretreatment in H2 @773K

Sieve fraction 315µ < x < 400µ GHSV = 
7600h-1

00:00 01:00 02:00 03:00 04:00 05:00
0
2
4
6
8

10
12
14
40
50
60
70
80
90

100

 XC3H8 (Mo
2
C)

 SC3H6 (Mo
2
C)

 XC3H8 (MoVC
x
)

 SC3H6 (MoVC
x
)

C
on

ve
rs

io
n/

S
el

ec
tiv

ity
 (

%
)

Absolute time (hh:mm)

Mo2C Mo(V)C

x

X(C3H8) 87% 88%

S(C3H6) 2.3% 3.6%

After 4 hours on stream @773K
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Flow – 40 mln/min; GHSV = 7600h-1

Mo2C (290mg) diluted 1:1 (w/w) with SiC

-pretreatment in H2 @773K
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Post DH*
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Steam DH @ 823K (16h)**

2θ
*feed composition as above

Temp

(K)

blank 773 823 873

BET**  

(m2/g)

57 50 54 -

** Over Mo(V)Cx with feed:
C3H8/H2O/N2 = 18/12/70
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• 773K reaction 

temperature

• 450mg Mo(V)Cx

• Feed:

– C3H8/H2O/N2 =  

16:13:71

– Total flow 20ml; 

– GHSV = 3800 h-1
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• 973K reaction 

temperature

• 450mg Mo(V)Cx

• Feed:

– C3H8/H2O/N2 =  

18:14:68

– Total flow 20ml; 

– GHSV = 3800 h-1
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